Zoology/PAPER IV - Gene Technology, Immunology and Computational Biology SEMESTER: - IV Semester

Semester: IV Semester, B. Sc., (Hons) Zoology

Course Title: Core Course Content: Gene Technology Immunology and Computational Biology	Course Code: DSCC5ZOOT4	
Course Type: Discipline Core Theory, L-T-P: 4-0-0	Course Credits: 4	
Total Contact Hours: 56	Duration of ESA: 3 Hrs.	
Formative Assessment Marks: 40	Summative Assessment Marks:60	

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Acquaint knowledge on versatile tools and techniques employed in genetic engineering and recombinant DNA technology.
- 2. An understanding on application of genetic engineering techniques in basic and applied experimental biology.
- 3. To acquire a fundamental working knowledge of the basic principles of immunology.
- 4. To understand how these principles, apply to the process of immune function.
- 5. Use, and interpret results of, the principal methods of statistical inference and design; helps to communicate the results of statistical analyses accurately and effectively; helps in usage of appropriate tool of statistical software.

Course Content	
Unit I	
Chapter 1: Principles of Gene Manipulation	07
 Recombinant DNA Technology: Introduction, steps involved. Restriction Enzymes and Ligases and Nucleic acid modifying enzyme. Gene cloning Vector: Concept of plasmids-pBR322, Lamda phage vectors, cosmids Gene transfer techniques (Direct and indirect). Screening and selection of recombinant colonies 	
Chapter 2: Applications of Genetic Engineering	
 Transgenic animals (Transgenic cow, Transgenic Fish); Transgenic plants (cry protein); Gene silencing (Knock out and Knock in mouse). Production of Human Recombinant insulin and Hybridoma technology: Synthesis and applications of Monoclonal antibodies Gene Therapy (SCID) Biosensors and its applications 	
Unit II	14

Chapter 3: Introduction to the Immune System	07
 Defence against diseases: Introduction, First and second line of defence, Innate and acquired immunity; Antigen presenting cells (APC's), Role of B and T-lymphocytes (Humoral immunity and cell mediated immunity), primary and secondary immune response. Types of Ummunity Functional aspects of organs of the Immune system - Thymus and bone marrow, spleen, Lymph Node, Small intestine and Liver (Peyer's patches and Von Kupffer cells). 	07
Chapter 4: Antigens and Antibodies	
 Antigens and haptens: Properties (foreignness, molecular size, heterogeneity). B and T cell epitopes. Structure of IgG and functions of different classes of immunoglobulins. Major histocompatibility complex - Structure of MHC I & II. 	
Unit III	14
 Chapter 5: Clinical Immunology Immunity against diseases of viral, bacterial and protozoan infections. Vaccines: Types and Uses - Immunization schedule for children. Transplantation immunology: Transplantation of organ- Types, graft rejection and Immuno-suppressors. 	07
 Chapter 6: Bioinformatics Databases: Sequence and structural Sequence analysis (homology): Pairwise and Multiple Sequence alignment-BLAST, CLUSTALW, Sequence alignment-FASTA. Scope and applications of Bioinformatics. 	07
Unit IV	14
 Chapter 7: Biostatistics I Measures of central tendency: Mean, Median, Mode. Data summarizing: Frequency distribution, Graphical presentation - bar diagram, pie diagram, histogram. Elementary idea of probability and its applications. Chapter 8: Biostatistics II Measures of dispersion: Range, Standard Deviation, Variance. Correlation and Regression. Tests of significance: F-test, ANOVA, t-test and Chi square test. 	07
• Tests of significance. Thesi, ANOVA, thesi and Chi square test.	07

1. Q/A, Short Question, Quiz, MCQ, Assignment etc.

Recommended Books:

- 1. Primrose & Twyman. Principles of Genome Analysis and Genomics. Blackwell (2003).
- 2. Hartl& Jones. Genetics: principles & Analsysis of Genes & Genomes. Jones & Bartlett (1998).
- 3. Sambrook*et al.* Molecular Cloning Vols I, II, III. CSHL (2001).
- 4. Primrose. Molecular Biotechnology. Panima (2001).
- 5. Clark & Switzer. Experimental Biochemistry. Freeman (2000)
- 6. Sudbery. Human Molecular Genetics. Prentice-Hall (2002).
- 7. Wilson. Clinical Genetics-A Short Course, Wiley (2000).
- 8. Pasternak. An Introduction to Molecular Human Genetics. Fritzgerald (2000).
- 9. Biostatistical Analysis (Fourth Edition) by Jerrold H. Zarr, Pearson Education Inc., Delhi.
- 10. Statistical Methods (Eighth Edition) by G. W. Snecdecor and W. G. Cochran, Willey Blackwell
- 11. Biostatistics (Tenth Edition) by W.W. Daniel and C. L. Cross, Wiley
- 12. Introductory Biological Statistics (Fourth Edition) by John E. Havel, Raymond E. Hampton and Scott
 - J. Meiners
- 13. Westhead et al Bioinformatics: Instant Notes. Viva Books (2003)
- 14. Genetic engineering: Sandhya Mitra BITS, Pilani
- 15. Principles of Biostatistics Khan and Khanam
- 16. Transgenic animals: Ranga

Web Sources:

Pedagogy: Lectures	, Presentations, videos	, Assignments and	Weekly Formative A	Assessment Tests.

Formative Assessment		
Assessment Occasion	Weightage in Marks	
Assignment/ Field Report/ Project	15 Marks	
Test	20 Marks	
Participation in class	05 marks	
Total	40 Marks	

Course Title: Gene Technology, Immunology and Computational Biology	Course Credits: 02	
Course Type: Minor Discipline Core Practical, L-T-P: 0-0-4	Corse Code: DSCC5ZOOP4	
Total Contact Hours: 56	Duration of ESA: 3 Hours	

Formative Assessment Marks: 25	Summative Assessment Marks: 25	
Model Syllabus Authors:		

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Accurately, safely and appropriately use all the equipment regularly used in Molecular Biology (DNA manipulation, including balances, pipettes, electrophoresis and centrifuges).
- 2. Prepare chemical solution and reagents to the precision appropriate to the task.
- 3. Demonstrate knowledge of the biochemical basis underpinning the molecular biology techniques.

Lab IV Course Content

	List of labs to be conducted	Hours
1.	Calculate the mean, median, mode and standard deviation (Measurement of	
	pre and post clitellar lengths (with suitable examples).	
2.	Measure the height and weight of all students in the class and apply statistical	
	measures.	
3.	Determination of ABO Blood group and Rh factor.	
4.	To study Restriction enzyme digestion using teaching kits (Demonstration	
	only).	
5.	To detect genetic mutations by Polymerase Chain Reaction (PCR) using	
	teaching kits (Demonstration only).	
6.	Demonstration of agarose gel electrophoresis for detection of DNA.	
7.	Demonstration of Polyacrylamide Gel Electrophoresis (PAGE) for detection	
	of proteins.	
8.	To calculate molecular weight of unknown DNA and protein fragments from	
	gel pictures. (<u>https://youtube/mCiCiO0cfbg</u>)	
9.	To learn nucleotide sequence database.	
10	. To learn sequence alignment: Pairwise alignment (Protein/ DNA).	

Pedagogy: Lectures, Presentations, videos, Labs, Assignments, Tests, Individual or group Field oriented Project Report.

Formative Assessment	
Assessment Occasion	Weightage in Marks
Assignment/Monograph	10
Test	10
Participation in class	05
Total	25